511 research outputs found

    Global Innovation Policy Index

    Get PDF
    Ranks fifty-five nations' strategies to boost innovation capacity: policies on trade, scientific research, information and communications technologies, tax, intellectual property, domestic competition, government procurement, and high-skill immigration

    Renormalization group analysis of the QCD quark potential to order v^2

    Get PDF
    A one-loop renormalization group analysis of the order v^2 relativistic corrections to the static QCD potential is presented. The velocity renormalization group is used to simultaneously sum ln(m/mv) and ln(m/mv^2) terms. The results are compared to previous calculations in the literature.Comment: 13 pages. important change: running of soft Lagrangian include

    Running of the heavy quark production current and 1/k potential in QCD

    Get PDF
    The 1/k contribution to the heavy quark potential is first generated at one loop order in QCD. We compute the two loop anomalous dimension for this potential, and find that the renormalization group running is significant. The next-to-leading-log coefficient for the heavy quark production current near threshold is determined. The velocity renormalization group result includes the alpha_s^3 ln^2(alpha_s) ``non-renormalization group logarithms'' of Kniehl and Penin.Comment: 30 pages, journal versio

    Ultrasoft Renormalization in Non-Relativistic QCD

    Get PDF
    For Non-Relativistic QCD the velocity renormalization group correlates the renormalization scales for ultrasoft, potential and soft degrees of freedom. Here we discuss the renormalization of operators by ultrasoft gluons. We show that renormalization of soft vertices can induce new operators, and also present a procedure for correctly subtracting divergences in mixed potential-ultrasoft graphs. Our results affect the running of the spin-independent potentials in QCD. The change for the NNLL t-tbar cross section near threshold is very small, being at the 1% level and essentially independent of the energy. We also discuss implications for analyzing situations where mv^2 ~ Lambda_QCD.Comment: 31 pages, 11 fig

    Evaluation of Chemcatcher® passive samplers for pesticide monitoring using high-frequency catchment scale data

    Get PDF
    Publication history: Accepted - 13 September 2022; Published online - 30 September 2022Passive samplers (PS) have been proposed as an enhanced water quality monitoring solution in rivers, but their performance against high-frequency data over the longer term has not been widely explored. This study compared the performance of Chemcatcher® passive sampling (PS) devices with high-frequency sampling (HFS: 7-hourly to daily) in two dynamic rivers over 16 months. The evaluation was based on the acid herbicides MCPA (2-methyl-4-chlorophenoxyacetic acid), mecoprop-P, fluroxypyr and triclopyr. The impact of river discharge parameters on Chemcatcher® device performance was also explored. Mixed effects modelling showed that time-weighted mean concentration (TWMC) and flow-weighted mean concentration (FWMC) values obtained by the HFS approach were both significantly higher (p 0.05). There was little indication that river flow parameters altered PS performance—some minor effects were not significant or consistent. Despite this, the PS recovery of very low concentrations indicated that Chemcatcher® devices may be used to evaluate the presence/absence and magnitude of acid herbicides in hydrologically dynamic rivers in synoptic type surveys where space and time coverage is required. However, a period of calibration of the devices in each river would be necessary if they were intended to provide a quantitative review of pesticide concentration as compared with HFS approaches.This work was funded in part by the Source to Tap project (project reference IVA5018 – http://www.sourcetotap.eu), supported by the European Union’s INTERREG VA Programme which is managed by the Special EU Programmes Body (SEUPB). The work was also part-funded by the FAIRWAY project (project reference 727984 - http://www.fair way-project.eu/). supported by the European Union’s HORIZON 2020 Programme

    The QCD heavy-quark potential to order v^2: one loop matching conditions

    Full text link
    The one-loop QCD heavy quark potential is computed to order v^2 in the color singlet and octet channels. Several errors in the previous literature are corrected. To be consistent with the velocity power counting, the full dependence on |p' + p|/|p' - p| is kept. The matching conditions for the NRQCD one-loop potential are computed by comparing the QCD calculation with that in the effective theory. The graphs in the effective theory are also compared to terms from the hard, soft, potential, and ultrasoft regimes in the threshold expansion. The issue of off-shell versus on-shell matching and gauge dependence is discussed in detail for the 1/(m k) term in the potential. Matching on-shell gives a 1/(m k) potential that is gauge independent and does not vanish for QED.Comment: 28 pages, References added and minor changes to section III, results unchange

    2D Kagome Ordering in the 3D Frustrated Spinel Li2Mn2O4

    Full text link
    muSR experiments on the geometrically frustrated spinel oxide, Li2Mn2O4, show the development of spin correlations over a range of length scales with decreasing temperature. Increased relaxation below 150 K is consistent with the onset of spin correlations. Below 50 K, spin order on a length scale, which is long range for the muSR probe, appears abruptly in temperature, consistent with prior neutron diffraction results. The oscillations in the zero field asymmetry are analyzed using a three frequency model. By locating the muon site this is shown to be consistent with the unexpected 2D q = root 3 x root 3 structure on the Kagome planes proposed originally from neutron data. Longitudinal field data demonstrate that some spin dynamics persist even at 2 K. Thus, a very complex magnetic ground state, featuring the co-existence of long length scale 2D ordering and significant spin dynamics, is proposed. This is unusual considering the 3D topology of the Mn3+ spins in this material.Comment: 9 pages, 9 figures, to be submitted to J. Phys. Cond. Mat

    Identifying opportunities for timely diagnosis of bladder and renal cancer via abnormal blood tests: a longitudinal linked data study.

    Get PDF
    BACKGROUND: Understanding pre-diagnostic test use could reveal diagnostic windows where more timely evaluation for cancer may be indicated. AIM: To examine pre-diagnostic patterns of results of abnormal blood tests in patients with bladder and renal cancer. DESIGN AND SETTING: A retrospective cohort study using primary care and cancer registry data on patients with bladder and renal cancer who were diagnosed between April 2012 and December 2015 in England. METHOD: The rates of patients with a first abnormal result in the year before cancer diagnosis, for 'generic' (full blood count components, inflammatory markers, and calcium) and 'organ-specific' blood tests (creatinine and liver function test components) that may lead to subsequent detection of incidental cancers, were examined. Poisson regression was used to detect the month during which the cohort's rate of each abnormal test started to increase from baseline. The proportion of patients with a test found in the first half of the diagnostic window was examined, as these 'early' tests might represent opportunities where further evaluation could be initiated. RESULTS: Data from 4533 patients with bladder and renal cancer were analysed. The monthly rate of patients with a first abnormal test increased towards the time of cancer diagnosis. Abnormalities of both generic (for example, high inflammatory markers) and organ-specific tests (for example, high creatinine) started to increase from 6-8 months pre-diagnosis, with 25%-40% of these patients having an abnormal test in the 'early half' of the diagnostic window. CONCLUSION: Population-level signals of bladder and renal cancer can be observed in abnormalities in commonly performed primary care blood tests up to 8 months before diagnosis, indicating the potential for earlier diagnosis in some patients

    Modality differences in timing and the filled-duration illusion: Testing the pacemaker rate explanation

    Get PDF
    Performance in temporal difference threshold and estimation tasks is markedly less accurate for visual than for auditory intervals. In addition, thresholds and estimates are likewise less accurate for empty than for filled intervals. In scalar timing theory, these differences have been explained as alterations in pacemaker rate, which is faster for auditory and filled intervals than for visual and empty intervals. We tested this explanation according to three research aims. First, we replicated the threshold and estimation tasks of Jones, Poliakoff, and Wells (Quarterly Journal of Experimental Psychology, 62, 2171-2186, 2009) and found the well-documented greater precision for auditory than visual intervals, and for filled than for empty intervals. Second, we considered inter-individual differences in these classic effects and found that up to 27% of participants exhibited opposite patterns. Finally, we examined intra-individual differences to investigate (i) whether thresholds and estimates correlate within each stimulus condition and (ii) whether the stimulus condition in which a participants' pacemaker rate was highest was the same in both tasks. Here we found that if pacemaker rate is indeed a driving factor for thresholds and estimates, its effect may be greater for empty intervals, where the two tasks correlate, than for filled intervals, where they do not. In addition, it was more common for participants to perform best in different modalities in each task, though this was not true for ordinal intra-individual differences in the filled-duration illusion. Overall, this research presents several findings inconsistent with the pacemaker rate explanation.Publisher's Versio

    Order alpha_s^2 beta_0 Correction to the Charged Lepton Spectrum in b \to c \ell \bar\nu_\ell decays

    Full text link
    We compute the \alpha_s^2\beta_0 part of the two-loop QCD corrections to the charged lepton spectrum in b \to c \ell \bar\nu_\ell decays and find them to be about 50\% of the first order corrections at all lepton energies, except those close to the end point. Including these corrections we extract the central values \bar\Lambda=0.33 GeV and \lambda_1=-0.17 GeV^2 for the HQET matrix elements and use them to determine the MS‾\overline{\rm MS} b and c quark masses, and |V_{cb}|.Comment: 15 pages, 1 Postscript figur
    • …
    corecore